The resulting type after applying the *
operator.
Performs the *
operation.
This method returns an Ordering
between self
and other
. Read more
fn max(self, other: Self) -> Self | 1.21.0 [src] |
[−]
Compares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self | 1.21.0 [src] |
[−]
Compares and returns the minimum of two values. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
The resulting type after applying the /
operator.
Performs the /
operation.
Formats the value using the given formatter. Read more
The resulting type after applying the +
operator.
The resulting Tm is in UTC.
The resulting type after applying the +
operator.
Performs the +
operation.
The resulting type after applying the +
operator.
Performs the +
operation.
The resulting type after applying the +
operator.
Performs the +
operation.
The resulting type after applying the -
operator.
Performs the unary -
operation.
This method tests for self
and other
values to be equal, and is used by ==
. Read more
This method tests for !=
.
The resulting type after applying the -
operator.
Performs the -
operation.
The resulting type after applying the -
operator.
The resulting Tm is in UTC.
The resulting type after applying the -
operator.
Performs the -
operation.
The resulting type after applying the -
operator.
Performs the -
operation.
Performs copy-assignment from source
. Read more
Formats the value using the given formatter. Read more
An addition of Duration
to NaiveDate
discards the fractional days,
rounding to the closest integral number of days towards Duration::zero()
.
Panics on underflow or overflow.
Use NaiveDate::checked_add_signed
to detect that.
use chrono::NaiveDate;
use time::Duration;
let from_ymd = NaiveDate::from_ymd;
assert_eq!(from_ymd(2014, 1, 1) + Duration::zero(), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) + Duration::seconds(86399), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) + Duration::seconds(-86399), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(1), from_ymd(2014, 1, 2));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(-1), from_ymd(2013, 12, 31));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(364), from_ymd(2014, 12, 31));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(365*4 + 1), from_ymd(2018, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) + Duration::days(365*400 + 97), from_ymd(2414, 1, 1));
The resulting type after applying the +
operator.
Performs the +
operation.
Performs the +=
operation.
A subtraction of Duration
from NaiveDate
discards the fractional days,
rounding to the closest integral number of days towards Duration::zero()
.
It is same to the addition with a negated Duration
.
Panics on underflow or overflow.
Use NaiveDate::checked_sub_signed
to detect that.
use chrono::NaiveDate;
use time::Duration;
let from_ymd = NaiveDate::from_ymd;
assert_eq!(from_ymd(2014, 1, 1) - Duration::zero(), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::seconds(86399), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::seconds(-86399), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(1), from_ymd(2013, 12, 31));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(-1), from_ymd(2014, 1, 2));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(364), from_ymd(2013, 1, 2));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(365*4 + 1), from_ymd(2010, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(365*400 + 97), from_ymd(1614, 1, 1));
The resulting type after applying the -
operator.
Performs the -
operation.
Performs the -=
operation.
An addition of Duration
to NaiveTime
wraps around and never overflows or underflows.
In particular the addition ignores integral number of days.
As a part of Chrono's leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
use chrono::NaiveTime;
use time::Duration;
let from_hmsm = NaiveTime::from_hms_milli;
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::zero(), from_hmsm(3, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(1), from_hmsm(3, 5, 8, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(-1), from_hmsm(3, 5, 6, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(60 + 4), from_hmsm(3, 6, 11, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(7*60*60 - 6*60), from_hmsm(9, 59, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::milliseconds(80), from_hmsm(3, 5, 7, 80));
assert_eq!(from_hmsm(3, 5, 7, 950) + Duration::milliseconds(280), from_hmsm(3, 5, 8, 230));
assert_eq!(from_hmsm(3, 5, 7, 950) + Duration::milliseconds(-980), from_hmsm(3, 5, 6, 970));
The addition wraps around.
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(22*60*60), from_hmsm(1, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::seconds(-8*60*60), from_hmsm(19, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + Duration::days(800), from_hmsm(3, 5, 7, 0));
Leap seconds are handled, but the addition assumes that it is the only leap second happened.
let leap = from_hmsm(3, 5, 59, 1_300);
assert_eq!(leap + Duration::zero(), from_hmsm(3, 5, 59, 1_300));
assert_eq!(leap + Duration::milliseconds(-500), from_hmsm(3, 5, 59, 800));
assert_eq!(leap + Duration::milliseconds(500), from_hmsm(3, 5, 59, 1_800));
assert_eq!(leap + Duration::milliseconds(800), from_hmsm(3, 6, 0, 100));
assert_eq!(leap + Duration::seconds(10), from_hmsm(3, 6, 9, 300));
assert_eq!(leap + Duration::seconds(-10), from_hmsm(3, 5, 50, 300));
assert_eq!(leap + Duration::days(1), from_hmsm(3, 5, 59, 300));
The resulting type after applying the +
operator.
Performs the +
operation.
Performs the +=
operation.
A subtraction of Duration
from NaiveTime
wraps around and never overflows or underflows.
In particular the addition ignores integral number of days.
It is same to the addition with a negated Duration
.
As a part of Chrono's leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
use chrono::NaiveTime;
use time::Duration;
let from_hmsm = NaiveTime::from_hms_milli;
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::zero(), from_hmsm(3, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(1), from_hmsm(3, 5, 6, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(60 + 5), from_hmsm(3, 4, 2, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(2*60*60 + 6*60), from_hmsm(0, 59, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::milliseconds(80), from_hmsm(3, 5, 6, 920));
assert_eq!(from_hmsm(3, 5, 7, 950) - Duration::milliseconds(280), from_hmsm(3, 5, 7, 670));
The subtraction wraps around.
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(8*60*60), from_hmsm(19, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::days(800), from_hmsm(3, 5, 7, 0));
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = from_hmsm(3, 5, 59, 1_300);
assert_eq!(leap - Duration::zero(), from_hmsm(3, 5, 59, 1_300));
assert_eq!(leap - Duration::milliseconds(200), from_hmsm(3, 5, 59, 1_100));
assert_eq!(leap - Duration::milliseconds(500), from_hmsm(3, 5, 59, 800));
assert_eq!(leap - Duration::seconds(60), from_hmsm(3, 5, 0, 300));
assert_eq!(leap - Duration::days(1), from_hmsm(3, 6, 0, 300));
The resulting type after applying the -
operator.
Performs the -
operation.
Performs the -=
operation.
An addition of Duration
to NaiveDateTime
yields another NaiveDateTime
.
As a part of Chrono's leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Panics on underflow or overflow.
Use NaiveDateTime::checked_add_signed
to detect that.
use chrono::NaiveDate;
use time::Duration;
let from_ymd = NaiveDate::from_ymd;
let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms(h, m, s);
assert_eq!(hms(3, 5, 7) + Duration::zero(), hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) + Duration::seconds(1), hms(3, 5, 8));
assert_eq!(hms(3, 5, 7) + Duration::seconds(-1), hms(3, 5, 6));
assert_eq!(hms(3, 5, 7) + Duration::seconds(3600 + 60), hms(4, 6, 7));
assert_eq!(hms(3, 5, 7) + Duration::seconds(86_400),
from_ymd(2016, 7, 9).and_hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) + Duration::days(365),
from_ymd(2017, 7, 8).and_hms(3, 5, 7));
let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
assert_eq!(hmsm(3, 5, 7, 980) + Duration::milliseconds(450), hmsm(3, 5, 8, 430));
Leap seconds are handled,
but the addition assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap + Duration::zero(), hmsm(3, 5, 59, 1_300));
assert_eq!(leap + Duration::milliseconds(-500), hmsm(3, 5, 59, 800));
assert_eq!(leap + Duration::milliseconds(500), hmsm(3, 5, 59, 1_800));
assert_eq!(leap + Duration::milliseconds(800), hmsm(3, 6, 0, 100));
assert_eq!(leap + Duration::seconds(10), hmsm(3, 6, 9, 300));
assert_eq!(leap + Duration::seconds(-10), hmsm(3, 5, 50, 300));
assert_eq!(leap + Duration::days(1),
from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300));
The resulting type after applying the +
operator.
Performs the +
operation.
Performs the +=
operation.
A subtraction of Duration
from NaiveDateTime
yields another NaiveDateTime
.
It is same to the addition with a negated Duration
.
As a part of Chrono's leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Panics on underflow or overflow.
Use NaiveDateTime::checked_sub_signed
to detect that.
use chrono::NaiveDate;
use time::Duration;
let from_ymd = NaiveDate::from_ymd;
let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms(h, m, s);
assert_eq!(hms(3, 5, 7) - Duration::zero(), hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(1), hms(3, 5, 6));
assert_eq!(hms(3, 5, 7) - Duration::seconds(-1), hms(3, 5, 8));
assert_eq!(hms(3, 5, 7) - Duration::seconds(3600 + 60), hms(2, 4, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(86_400),
from_ymd(2016, 7, 7).and_hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) - Duration::days(365),
from_ymd(2015, 7, 9).and_hms(3, 5, 7));
let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
assert_eq!(hmsm(3, 5, 7, 450) - Duration::milliseconds(670), hmsm(3, 5, 6, 780));
Leap seconds are handled,
but the subtraction assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap - Duration::zero(), hmsm(3, 5, 59, 1_300));
assert_eq!(leap - Duration::milliseconds(200), hmsm(3, 5, 59, 1_100));
assert_eq!(leap - Duration::milliseconds(500), hmsm(3, 5, 59, 800));
assert_eq!(leap - Duration::seconds(60), hmsm(3, 5, 0, 300));
assert_eq!(leap - Duration::days(1),
from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300));
The resulting type after applying the -
operator.
Performs the -
operation.
Performs the -=
operation.
The resulting type after applying the +
operator.
Performs the +
operation.
The resulting type after applying the -
operator.
Performs the -
operation.
The resulting type after applying the +
operator.
Performs the +
operation.
The resulting type after applying the -
operator.
Performs the -
operation.