Struct chrono::naive::NaiveDateTime [−][src]
ISO 8601 combined date and time without timezone.
Example
NaiveDateTime
is commonly created from NaiveDate
.
use chrono::{NaiveDate, NaiveDateTime}; let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11);
You can use typical date-like and time-like methods, provided that relevant traits are in the scope.
use chrono::{Datelike, Timelike, Weekday}; assert_eq!(dt.weekday(), Weekday::Fri); assert_eq!(dt.num_seconds_from_midnight(), 33011);
Methods
impl NaiveDateTime
[src]
[−]
impl NaiveDateTime
pub fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime
[src]
[−]
pub fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime
Makes a new NaiveDateTime
from date and time components.
Equivalent to date.and_time(time)
and many other helper constructors on NaiveDate
.
Example
use chrono::{NaiveDate, NaiveTime, NaiveDateTime}; let d = NaiveDate::from_ymd(2015, 6, 3); let t = NaiveTime::from_hms_milli(12, 34, 56, 789); let dt = NaiveDateTime::new(d, t); assert_eq!(dt.date(), d); assert_eq!(dt.time(), t);
pub fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime
[src]
[−]
pub fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime
Makes a new NaiveDateTime
corresponding to a UTC date and time,
from the number of non-leap seconds
since the midnight UTC on January 1, 1970 (aka "UNIX timestamp")
and the number of nanoseconds since the last whole non-leap second.
For a non-naive version of this function see
TimeZone::timestamp
.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second. (The true "UNIX timestamp" cannot represent a leap second unambiguously.)
Panics on the out-of-range number of seconds and/or invalid nanosecond.
Example
use chrono::{NaiveDateTime, NaiveDate}; let dt = NaiveDateTime::from_timestamp(0, 42_000_000); assert_eq!(dt, NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 0, 42)); let dt = NaiveDateTime::from_timestamp(1_000_000_000, 0); assert_eq!(dt, NaiveDate::from_ymd(2001, 9, 9).and_hms(1, 46, 40));
pub fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option<NaiveDateTime>
[src]
[−]
pub fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
corresponding to a UTC date and time,
from the number of non-leap seconds
since the midnight UTC on January 1, 1970 (aka "UNIX timestamp")
and the number of nanoseconds since the last whole non-leap second.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second. (The true "UNIX timestamp" cannot represent a leap second unambiguously.)
Returns None
on the out-of-range number of seconds and/or invalid nanosecond.
Example
use chrono::{NaiveDateTime, NaiveDate}; use std::i64; let from_timestamp_opt = NaiveDateTime::from_timestamp_opt; assert!(from_timestamp_opt(0, 0).is_some()); assert!(from_timestamp_opt(0, 999_999_999).is_some()); assert!(from_timestamp_opt(0, 1_500_000_000).is_some()); // leap second assert!(from_timestamp_opt(0, 2_000_000_000).is_none()); assert!(from_timestamp_opt(i64::MAX, 0).is_none());
pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDateTime>
[src]
[−]
pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDateTime>
Parses a string with the specified format string and returns a new NaiveDateTime
.
See the format::strftime
module
on the supported escape sequences.
Example
use chrono::{NaiveDateTime, NaiveDate}; let parse_from_str = NaiveDateTime::parse_from_str; assert_eq!(parse_from_str("2015-09-05 23:56:04", "%Y-%m-%d %H:%M:%S"), Ok(NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4))); assert_eq!(parse_from_str("5sep2015pm012345.6789", "%d%b%Y%p%I%M%S%.f"), Ok(NaiveDate::from_ymd(2015, 9, 5).and_hms_micro(13, 23, 45, 678_900)));
Offset is ignored for the purpose of parsing.
assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"), Ok(NaiveDate::from_ymd(2014, 5, 17).and_hms(12, 34, 56)));
Leap seconds are correctly handled by
treating any time of the form hh:mm:60
as a leap second.
(This equally applies to the formatting, so the round trip is possible.)
assert_eq!(parse_from_str("2015-07-01 08:59:60.123", "%Y-%m-%d %H:%M:%S%.f"), Ok(NaiveDate::from_ymd(2015, 7, 1).and_hms_milli(8, 59, 59, 1_123)));
Missing seconds are assumed to be zero, but out-of-bound times or insufficient fields are errors otherwise.
assert_eq!(parse_from_str("94/9/4 7:15", "%y/%m/%d %H:%M"), Ok(NaiveDate::from_ymd(1994, 9, 4).and_hms(7, 15, 0))); assert!(parse_from_str("04m33s", "%Mm%Ss").is_err()); assert!(parse_from_str("94/9/4 12", "%y/%m/%d %H").is_err()); assert!(parse_from_str("94/9/4 17:60", "%y/%m/%d %H:%M").is_err()); assert!(parse_from_str("94/9/4 24:00:00", "%y/%m/%d %H:%M:%S").is_err());
All parsed fields should be consistent to each other, otherwise it's an error.
let fmt = "%Y-%m-%d %H:%M:%S = UNIX timestamp %s"; assert!(parse_from_str("2001-09-09 01:46:39 = UNIX timestamp 999999999", fmt).is_ok()); assert!(parse_from_str("1970-01-01 00:00:00 = UNIX timestamp 1", fmt).is_err());
pub fn date(&self) -> NaiveDate
[src]
[−]
pub fn date(&self) -> NaiveDate
Retrieves a date component.
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11); assert_eq!(dt.date(), NaiveDate::from_ymd(2016, 7, 8));
pub fn time(&self) -> NaiveTime
[src]
[−]
pub fn time(&self) -> NaiveTime
Retrieves a time component.
Example
use chrono::{NaiveDate, NaiveTime}; let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11); assert_eq!(dt.time(), NaiveTime::from_hms(9, 10, 11));
pub fn timestamp(&self) -> i64
[src]
[−]
pub fn timestamp(&self) -> i64
Returns the number of non-leap seconds since the midnight on January 1, 1970.
Note that this does not account for the timezone! The true "UNIX timestamp" would count seconds since the midnight UTC on the epoch.
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 1, 980); assert_eq!(dt.timestamp(), 1); let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms(1, 46, 40); assert_eq!(dt.timestamp(), 1_000_000_000);
pub fn timestamp_millis(&self) -> i64
[src]
[−]
pub fn timestamp_millis(&self) -> i64
Returns the number of non-leap milliseconds since midnight on January 1, 1970.
Note that this does not account for the timezone! The true "UNIX timestamp" would count seconds since the midnight UTC on the epoch.
Note also that this does reduce the number of years that can be represented from ~584 Billion to ~584 Million. (If this is a problem, please file an issue to let me know what domain needs millisecond precision over billions of years, I'm curious.)
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 1, 444); assert_eq!(dt.timestamp_millis(), 1_444); let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms_milli(1, 46, 40, 555); assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);
pub fn timestamp_nanos(&self) -> i64
[src]
[−]
pub fn timestamp_nanos(&self) -> i64
Returns the number of non-leap nanoseconds since midnight on January 1, 1970.
Note that this does not account for the timezone! The true "UNIX timestamp" would count seconds since the midnight UTC on the epoch.
Note also that this does reduce the number of years that can be represented from ~584 Billion to ~584. (If this is a problem, please file an issue to let me know what domain needs nanosecond precision over millenia, I'm curious.)
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_nano(0, 0, 1, 444); assert_eq!(dt.timestamp_nanos(), 1_000_000_444); let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms_nano(1, 46, 40, 555); assert_eq!(dt.timestamp_nanos(), 1_000_000_000_000_000_555);
pub fn timestamp_subsec_millis(&self) -> u32
[src]
[−]
pub fn timestamp_subsec_millis(&self) -> u32
Returns the number of milliseconds since the last whole non-leap second.
The return value ranges from 0 to 999, or for leap seconds, to 1,999.
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789); assert_eq!(dt.timestamp_subsec_millis(), 123); let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890); assert_eq!(dt.timestamp_subsec_millis(), 1_234);
pub fn timestamp_subsec_micros(&self) -> u32
[src]
[−]
pub fn timestamp_subsec_micros(&self) -> u32
Returns the number of microseconds since the last whole non-leap second.
The return value ranges from 0 to 999,999, or for leap seconds, to 1,999,999.
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789); assert_eq!(dt.timestamp_subsec_micros(), 123_456); let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890); assert_eq!(dt.timestamp_subsec_micros(), 1_234_567);
pub fn timestamp_subsec_nanos(&self) -> u32
[src]
[−]
pub fn timestamp_subsec_nanos(&self) -> u32
Returns the number of nanoseconds since the last whole non-leap second.
The return value ranges from 0 to 999,999,999, or for leap seconds, to 1,999,999,999.
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789); assert_eq!(dt.timestamp_subsec_nanos(), 123_456_789); let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890); assert_eq!(dt.timestamp_subsec_nanos(), 1_234_567_890);
pub fn checked_add_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
[src]
[−]
pub fn checked_add_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
Adds given Duration
to the current date and time.
As a part of Chrono's leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Returns None
when it will result in overflow.
Example
use chrono::NaiveDate; use time::Duration; let from_ymd = NaiveDate::from_ymd; let d = from_ymd(2016, 7, 8); let hms = |h, m, s| d.and_hms(h, m, s); assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::zero()), Some(hms(3, 5, 7))); assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(1)), Some(hms(3, 5, 8))); assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(-1)), Some(hms(3, 5, 6))); assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(3600 + 60)), Some(hms(4, 6, 7))); assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(86_400)), Some(from_ymd(2016, 7, 9).and_hms(3, 5, 7))); let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli); assert_eq!(hmsm(3, 5, 7, 980).checked_add_signed(Duration::milliseconds(450)), Some(hmsm(3, 5, 8, 430)));
Overflow returns None
.
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::days(1_000_000_000)), None);
Leap seconds are handled, but the addition assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300); assert_eq!(leap.checked_add_signed(Duration::zero()), Some(hmsm(3, 5, 59, 1_300))); assert_eq!(leap.checked_add_signed(Duration::milliseconds(-500)), Some(hmsm(3, 5, 59, 800))); assert_eq!(leap.checked_add_signed(Duration::milliseconds(500)), Some(hmsm(3, 5, 59, 1_800))); assert_eq!(leap.checked_add_signed(Duration::milliseconds(800)), Some(hmsm(3, 6, 0, 100))); assert_eq!(leap.checked_add_signed(Duration::seconds(10)), Some(hmsm(3, 6, 9, 300))); assert_eq!(leap.checked_add_signed(Duration::seconds(-10)), Some(hmsm(3, 5, 50, 300))); assert_eq!(leap.checked_add_signed(Duration::days(1)), Some(from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300)));
pub fn checked_sub_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
[src]
[−]
pub fn checked_sub_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
Subtracts given Duration
from the current date and time.
As a part of Chrono's leap second handling,
the subtraction assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Returns None
when it will result in overflow.
Example
use chrono::NaiveDate; use time::Duration; let from_ymd = NaiveDate::from_ymd; let d = from_ymd(2016, 7, 8); let hms = |h, m, s| d.and_hms(h, m, s); assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::zero()), Some(hms(3, 5, 7))); assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(1)), Some(hms(3, 5, 6))); assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(-1)), Some(hms(3, 5, 8))); assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(3600 + 60)), Some(hms(2, 4, 7))); assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(86_400)), Some(from_ymd(2016, 7, 7).and_hms(3, 5, 7))); let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli); assert_eq!(hmsm(3, 5, 7, 450).checked_sub_signed(Duration::milliseconds(670)), Some(hmsm(3, 5, 6, 780)));
Overflow returns None
.
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::days(1_000_000_000)), None);
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300); assert_eq!(leap.checked_sub_signed(Duration::zero()), Some(hmsm(3, 5, 59, 1_300))); assert_eq!(leap.checked_sub_signed(Duration::milliseconds(200)), Some(hmsm(3, 5, 59, 1_100))); assert_eq!(leap.checked_sub_signed(Duration::milliseconds(500)), Some(hmsm(3, 5, 59, 800))); assert_eq!(leap.checked_sub_signed(Duration::seconds(60)), Some(hmsm(3, 5, 0, 300))); assert_eq!(leap.checked_sub_signed(Duration::days(1)), Some(from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300)));
pub fn signed_duration_since(self, rhs: NaiveDateTime) -> OldDuration
[src]
[−]
pub fn signed_duration_since(self, rhs: NaiveDateTime) -> OldDuration
Subtracts another NaiveDateTime
from the current date and time.
This does not overflow or underflow at all.
As a part of Chrono's leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveDateTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
Example
use chrono::NaiveDate; use time::Duration; let from_ymd = NaiveDate::from_ymd; let d = from_ymd(2016, 7, 8); assert_eq!(d.and_hms(3, 5, 7).signed_duration_since(d.and_hms(2, 4, 6)), Duration::seconds(3600 + 60 + 1)); // July 8 is 190th day in the year 2016 let d0 = from_ymd(2016, 1, 1); assert_eq!(d.and_hms_milli(0, 7, 6, 500).signed_duration_since(d0.and_hms(0, 0, 0)), Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));
Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.
let leap = from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500); assert_eq!(leap.signed_duration_since(from_ymd(2015, 6, 30).and_hms(23, 0, 0)), Duration::seconds(3600) + Duration::milliseconds(500)); assert_eq!(from_ymd(2015, 7, 1).and_hms(1, 0, 0).signed_duration_since(leap), Duration::seconds(3600) - Duration::milliseconds(500));
pub fn format_with_items<'a, I>(&self, items: I) -> DelayedFormat<I> where
I: Iterator<Item = Item<'a>> + Clone,
[src]
[−]
pub fn format_with_items<'a, I>(&self, items: I) -> DelayedFormat<I> where
I: Iterator<Item = Item<'a>> + Clone,
Formats the combined date and time with the specified formatting items.
Otherwise it is same to the ordinary format
method.
The Iterator
of items should be Clone
able,
since the resulting DelayedFormat
value may be formatted multiple times.
Example
use chrono::NaiveDate; use chrono::format::strftime::StrftimeItems; let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S"); let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4); assert_eq!(dt.format_with_items(fmt.clone()).to_string(), "2015-09-05 23:56:04"); assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", dt.format_with_items(fmt)), "2015-09-05 23:56:04");
pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>
[src]
[−]
pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>
Formats the combined date and time with the specified format string.
See the format::strftime
module
on the supported escape sequences.
This returns a DelayedFormat
,
which gets converted to a string only when actual formatting happens.
You may use the to_string
method to get a String
,
or just feed it into print!
and other formatting macros.
(In this way it avoids the redundant memory allocation.)
A wrong format string does not issue an error immediately.
Rather, converting or formatting the DelayedFormat
fails.
You are recommended to immediately use DelayedFormat
for this reason.
Example
use chrono::NaiveDate; let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4); assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04"); assert_eq!(dt.format("around %l %p on %b %-d").to_string(), "around 11 PM on Sep 5");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", dt.format("%Y-%m-%d %H:%M:%S")), "2015-09-05 23:56:04"); assert_eq!(format!("{}", dt.format("around %l %p on %b %-d")), "around 11 PM on Sep 5");
Trait Implementations
impl Add<FixedOffset> for NaiveDateTime
[src]
[+]
impl Add<FixedOffset> for NaiveDateTime
impl Sub<FixedOffset> for NaiveDateTime
[src]
[+]
impl Sub<FixedOffset> for NaiveDateTime
impl PartialEq for NaiveDateTime
[src]
[+]
impl PartialEq for NaiveDateTime
impl Eq for NaiveDateTime
[src]
impl Eq for NaiveDateTime
impl PartialOrd for NaiveDateTime
[src]
[+]
impl PartialOrd for NaiveDateTime
impl Ord for NaiveDateTime
[src]
[+]
impl Ord for NaiveDateTime
impl Copy for NaiveDateTime
[src]
impl Copy for NaiveDateTime
impl Clone for NaiveDateTime
[src]
[+]
impl Clone for NaiveDateTime
impl Datelike for NaiveDateTime
[src]
[+]
impl Datelike for NaiveDateTime
impl Timelike for NaiveDateTime
[src]
[+]
impl Timelike for NaiveDateTime
impl Hash for NaiveDateTime
[src]
[+]
impl Hash for NaiveDateTime
fn hash<H: Hasher>(&self, state: &mut H)
[src]
[−]
fn hash<H: Hasher>(&self, state: &mut H)
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
[−]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
impl Add<OldDuration> for NaiveDateTime
[src]
[+]
impl Add<OldDuration> for NaiveDateTime
type Output = NaiveDateTime
fn add(self, rhs: OldDuration) -> NaiveDateTime
[src]
[−]
fn add(self, rhs: OldDuration) -> NaiveDateTime
impl AddAssign<OldDuration> for NaiveDateTime
[src]
[+]
impl AddAssign<OldDuration> for NaiveDateTime
impl Sub<OldDuration> for NaiveDateTime
[src]
[+]
impl Sub<OldDuration> for NaiveDateTime
type Output = NaiveDateTime
fn sub(self, rhs: OldDuration) -> NaiveDateTime
[src]
[−]
fn sub(self, rhs: OldDuration) -> NaiveDateTime
impl SubAssign<OldDuration> for NaiveDateTime
[src]
[+]
impl SubAssign<OldDuration> for NaiveDateTime
impl Sub<NaiveDateTime> for NaiveDateTime
[src]
[+]
impl Sub<NaiveDateTime> for NaiveDateTime
type Output = OldDuration
fn sub(self, rhs: NaiveDateTime) -> OldDuration
[src]
[−]
fn sub(self, rhs: NaiveDateTime) -> OldDuration
impl Debug for NaiveDateTime
[src]
[+]
impl Debug for NaiveDateTime
impl Display for NaiveDateTime
[src]
[+]
impl Display for NaiveDateTime
impl FromStr for NaiveDateTime
[src]
[+]
impl FromStr for NaiveDateTime
type Err = ParseError
fn from_str(s: &str) -> ParseResult<NaiveDateTime>
[src]
[−]
fn from_str(s: &str) -> ParseResult<NaiveDateTime>
Auto Trait Implementations
impl Send for NaiveDateTime
impl Send for NaiveDateTime
impl Sync for NaiveDateTime
impl Sync for NaiveDateTime