Struct lock_api::RwLockWriteGuard [−][src]
#[must_use]pub struct RwLockWriteGuard<'a, R: RawRwLock + 'a, T: ?Sized + 'a> { /* fields omitted */ }
RAII structure used to release the exclusive write access of a lock when dropped.
Methods
impl<'a, R: RawRwLock + 'a, T: ?Sized + 'a> RwLockWriteGuard<'a, R, T>
[src]
impl<'a, R: RawRwLock + 'a, T: ?Sized + 'a> RwLockWriteGuard<'a, R, T>
pub fn rwlock(s: &Self) -> &'a RwLock<R, T>
[src]
pub fn rwlock(s: &Self) -> &'a RwLock<R, T>
Returns a reference to the original reader-writer lock object.
pub fn map<U: ?Sized, F>(orig: Self, f: F) -> MappedRwLockWriteGuard<'a, R, U> where
F: FnOnce(&mut T) -> &mut U,
[src]
pub fn map<U: ?Sized, F>(orig: Self, f: F) -> MappedRwLockWriteGuard<'a, R, U> where
F: FnOnce(&mut T) -> &mut U,
Make a new MappedRwLockWriteGuard
for a component of the locked data.
This operation cannot fail as the RwLockWriteGuard
passed
in already locked the data.
This is an associated function that needs to be
used as RwLockWriteGuard::map(...)
. A method would interfere with methods of
the same name on the contents of the locked data.
pub fn unlocked<F, U>(s: &mut Self, f: F) -> U where
F: FnOnce() -> U,
[src]
pub fn unlocked<F, U>(s: &mut Self, f: F) -> U where
F: FnOnce() -> U,
Temporarily unlocks the RwLock
to execute the given function.
This is safe because &mut
guarantees that there exist no other
references to the data protected by the RwLock
.
impl<'a, R: RawRwLockDowngrade + 'a, T: ?Sized + 'a> RwLockWriteGuard<'a, R, T>
[src]
impl<'a, R: RawRwLockDowngrade + 'a, T: ?Sized + 'a> RwLockWriteGuard<'a, R, T>
pub fn downgrade(s: Self) -> RwLockReadGuard<'a, R, T>
[src]
pub fn downgrade(s: Self) -> RwLockReadGuard<'a, R, T>
Atomically downgrades a write lock into a read lock without allowing any writers to take exclusive access of the lock in the meantime.
Note that if there are any writers currently waiting to take the lock then other readers may not be able to acquire the lock even if it was downgraded.
impl<'a, R: RawRwLockUpgradeDowngrade + 'a, T: ?Sized + 'a> RwLockWriteGuard<'a, R, T>
[src]
impl<'a, R: RawRwLockUpgradeDowngrade + 'a, T: ?Sized + 'a> RwLockWriteGuard<'a, R, T>
pub fn downgrade_to_upgradable(s: Self) -> RwLockUpgradableReadGuard<'a, R, T>
[src]
pub fn downgrade_to_upgradable(s: Self) -> RwLockUpgradableReadGuard<'a, R, T>
Atomically downgrades a write lock into an upgradable read lock without allowing any writers to take exclusive access of the lock in the meantime.
Note that if there are any writers currently waiting to take the lock then other readers may not be able to acquire the lock even if it was downgraded.
impl<'a, R: RawRwLockFair + 'a, T: ?Sized + 'a> RwLockWriteGuard<'a, R, T>
[src]
impl<'a, R: RawRwLockFair + 'a, T: ?Sized + 'a> RwLockWriteGuard<'a, R, T>
pub fn unlock_fair(s: Self)
[src]
pub fn unlock_fair(s: Self)
Unlocks the RwLock
using a fair unlock protocol.
By default, RwLock
is unfair and allow the current thread to re-lock
the RwLock
before another has the chance to acquire the lock, even if
that thread has been blocked on the RwLock
for a long time. This is
the default because it allows much higher throughput as it avoids
forcing a context switch on every RwLock
unlock. This can result in one
thread acquiring a RwLock
many more times than other threads.
However in some cases it can be beneficial to ensure fairness by forcing
the lock to pass on to a waiting thread if there is one. This is done by
using this method instead of dropping the RwLockWriteGuard
normally.
pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U where
F: FnOnce() -> U,
[src]
pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U where
F: FnOnce() -> U,
Temporarily unlocks the RwLock
to execute the given function.
The RwLock
is unlocked a fair unlock protocol.
This is safe because &mut
guarantees that there exist no other
references to the data protected by the RwLock
.
pub fn bump(s: &mut Self)
[src]
pub fn bump(s: &mut Self)
Temporarily yields the RwLock
to a waiting thread if there is one.
This method is functionally equivalent to calling unlock_fair
followed
by write
, however it can be much more efficient in the case where there
are no waiting threads.
Trait Implementations
impl<'a, R: RawRwLock + 'a, T: ?Sized + Sync + 'a> Sync for RwLockWriteGuard<'a, R, T>
[src]
impl<'a, R: RawRwLock + 'a, T: ?Sized + Sync + 'a> Sync for RwLockWriteGuard<'a, R, T>
impl<'a, R: RawRwLock + 'a, T: ?Sized + 'a> Deref for RwLockWriteGuard<'a, R, T>
[src]
impl<'a, R: RawRwLock + 'a, T: ?Sized + 'a> Deref for RwLockWriteGuard<'a, R, T>
type Target = T
The resulting type after dereferencing.
fn deref(&self) -> &T
[src]
fn deref(&self) -> &T
Dereferences the value.
impl<'a, R: RawRwLock + 'a, T: ?Sized + 'a> DerefMut for RwLockWriteGuard<'a, R, T>
[src]
impl<'a, R: RawRwLock + 'a, T: ?Sized + 'a> DerefMut for RwLockWriteGuard<'a, R, T>
impl<'a, R: RawRwLock + 'a, T: ?Sized + 'a> Drop for RwLockWriteGuard<'a, R, T>
[src]
impl<'a, R: RawRwLock + 'a, T: ?Sized + 'a> Drop for RwLockWriteGuard<'a, R, T>
impl<'a, R: RawRwLock + 'a, T: ?Sized + 'a> StableAddress for RwLockWriteGuard<'a, R, T>
[src]
impl<'a, R: RawRwLock + 'a, T: ?Sized + 'a> StableAddress for RwLockWriteGuard<'a, R, T>
Auto Trait Implementations
impl<'a, R, T: ?Sized> Send for RwLockWriteGuard<'a, R, T> where
R: Sync,
T: Send + Sync,
<R as RawRwLock>::GuardMarker: Send,
impl<'a, R, T: ?Sized> Send for RwLockWriteGuard<'a, R, T> where
R: Sync,
T: Send + Sync,
<R as RawRwLock>::GuardMarker: Send,