1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

// *R* and *r* in Montgomery math refer to different things, so we always use
// `R` to refer to *R* to avoid confusion, even when that's against the normal
// naming conventions. Also the standard camelCase names are used for
// `RSAKeyPair` components.
#![allow(non_snake_case)]

/// RSA signatures.

use {bits, der, error};
use untrusted;

#[cfg(feature = "rsa_signing")]
use limb;

mod padding;

// `RSA_PKCS1_SHA1` is intentionally not exposed.
#[cfg(feature = "rsa_signing")]
pub use self::padding::RSAEncoding;

pub use self::padding::{
    RSA_PKCS1_SHA256,
    RSA_PKCS1_SHA384,
    RSA_PKCS1_SHA512,

    RSA_PSS_SHA256,
    RSA_PSS_SHA384,
    RSA_PSS_SHA512
};


// Maximum RSA modulus size supported for signature verification (in bytes).
const PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN: usize = 8192 / 8;

// Keep in sync with the documentation comment for `RSAKeyPair`.
#[cfg(feature = "rsa_signing")]
const PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS: bits::BitLength =
    bits::BitLength(4096);

#[cfg(feature = "rsa_signing")]
const PRIVATE_KEY_PUBLIC_MODULUS_MAX_LIMBS: usize =
    (4096 + limb::LIMB_BITS - 1) / limb::LIMB_BITS;


/// Parameters for RSA verification.
pub struct RSAParameters {
    padding_alg: &'static padding::RSAVerification,
    min_bits: bits::BitLength,
    id: RSAParametersID,
}

#[allow(non_camel_case_types)]
enum RSAParametersID {
    RSA_PKCS1_2048_8192_SHA1,
    RSA_PKCS1_2048_8192_SHA256,
    RSA_PKCS1_2048_8192_SHA384,
    RSA_PKCS1_2048_8192_SHA512,
    RSA_PKCS1_3072_8192_SHA384,
    RSA_PSS_2048_8192_SHA256,
    RSA_PSS_2048_8192_SHA384,
    RSA_PSS_2048_8192_SHA512,
}

fn parse_public_key(input: untrusted::Input)
                    -> Result<(untrusted::Input, untrusted::Input),
                              error::Unspecified> {
    input.read_all(error::Unspecified, |input| {
        der::nested(input, der::Tag::Sequence, error::Unspecified, |input| {
            let n = der::positive_integer(input)?;
            let e = der::positive_integer(input)?;
            Ok((n, e))
        })
    })
}

fn check_public_modulus_and_exponent(
        n: bigint::Positive, e: bigint::Positive, n_min_bits: bits::BitLength,
        n_max_bits: bits::BitLength, e_min_bits: bits::BitLength)
        -> Result<(bigint::OddPositive, bigint::PublicExponent),
                  error::Unspecified> {
    // This is an incomplete implementation of NIST SP800-56Br1 Section
    // 6.4.2.2, "Partial Public-Key Validation for RSA." That spec defers to
    // NIST SP800-89 Section 5.3.3, "(Explicit) Partial Public Key Validation
    // for RSA," "with the caveat that the length of the modulus shall be a
    // length that is specified in this Recommendation." In SP800-89, two
    // different sets of steps are given, one set numbered, and one set
    // lettered. TODO: Document this in the end-user documentation for RSA
    // keys.

    // Step 3 / Step c (out of order).
    let n = n.into_odd_positive()?;
    let e = e.into_odd_positive()?;

    // `pkcs1_encode` depends on this not being small. Otherwise,
    // `pkcs1_encode` would generate padding that is invalid (too few 0xFF
    // bytes) for very small keys.
    const N_MIN_BITS: bits::BitLength = bits::BitLength(2048);

    // Step 1 / Step a. XXX: SP800-56Br1 and SP800-89 require the length of
    // the public modulus to be exactly 2048 or 3072 bits, but we are more
    // flexible to be compatible with other commonly-used crypto libraries.
    assert!(n_min_bits >= N_MIN_BITS);
    let n_bits = n.bit_length();
    let n_bits_rounded_up =
        bits::BitLength::from_usize_bytes(n_bits.as_usize_bytes_rounded_up())?;
    if n_bits_rounded_up < n_min_bits {
        return Err(error::Unspecified);
    }
    if n_bits > n_max_bits {
        return Err(error::Unspecified);
    }

    // Step 2 / Step b. NIST SP800-89 defers to FIPS 186-3, which requires
    // `e > 2**16`, so the requirement is met if and only if `e_min_bits >= 17`.
    // We enforce this when signing, but are more flexible in verification, for
    // compatibility.
    debug_assert!(e_min_bits >= bits::BitLength::from_usize_bits(2));
    let e_bits = e.bit_length();
    if e_bits < e_min_bits {
        return Err(error::Unspecified);
    }

    // Only small public exponents are supported.
    let e = e.into_public_exponent()?;

    // If `n` is less than `e` then somebody has probably accidentally swapped
    // them. The largest acceptable `e` is smaller than the smallest acceptable
    // `n`, so no additional checks need to be done.
    debug_assert!(e_min_bits < bigint::PUBLIC_EXPONENT_MAX_BITS);
    debug_assert!(bigint::PUBLIC_EXPONENT_MAX_BITS < N_MIN_BITS);

    // XXX: Steps 4 & 5 / Steps d, e, & f are not implemented. This is also the
    // case in most other commonly-used crypto libraries.

    Ok((n, e))
}

// Type-level representation of an RSA public modulus *n*. See
// `super::bigint`'s modulue-level documentation.
pub enum N {}

pub mod verification;

#[cfg(feature = "rsa_signing")]
pub mod signing;

mod bigint;

#[cfg(feature = "rsa_signing")]
mod blinding;

#[cfg(feature = "rsa_signing")]
mod random;