1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
// Copyright 2015 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. //! HMAC-based Extract-and-Expand Key Derivation Function. //! //! HKDF is specified in [RFC 5869]. //! //! In most situations, it is best to use `extract_and_expand` to do both the //! HKDF-Extract and HKDF-Expand as one atomic operation. It is only necessary //! to use the separate `expand` and `extract` functions if a single derived //! `PRK` (defined in RFC 5869) is used more than once. //! //! Salts have type `hmac::SigningKey` instead of `&[u8]` because they are //! frequently used for multiple HKDF operations, and it is more efficient to //! construct the `SigningKey` once and reuse it. Given a digest algorithm //! `digest_alg` and a salt `salt: &[u8]`, the `SigningKey` should be //! constructed as `hmac::SigningKey::new(digest_alg, salt)`. //! //! [RFC 5869]: https://tools.ietf.org/html/rfc5869 use hmac; /// Fills `out` with the output of the HKDF Extract-and-Expand operation for /// the given inputs. /// /// `extract_and_expand` is exactly equivalent to: /// /// ``` /// # use ring::{hkdf, hmac}; /// # fn foo(salt: &hmac::SigningKey, secret: &[u8], info: &[u8], /// # out: &mut [u8]) { /// let prk = hkdf::extract(salt, secret); /// hkdf::expand(&prk, info, out) /// # } /// ``` /// /// See the documentation for `extract` and `expand` for details. /// /// # Panics /// /// `extract_and_expand` panics if `expand` panics. pub fn extract_and_expand(salt: &hmac::SigningKey, secret: &[u8], info: &[u8], out: &mut [u8]) { let prk = extract(salt, secret); expand(&prk, info, out) } /// The HKDF-Extract operation. /// /// | Parameter | RFC 5869 Term /// |---------------------------|-------------- /// | `salt.digest_algorithm()` | Hash /// | `secret` | IKM (Input Keying Material) /// | [return value] | PRK pub fn extract(salt: &hmac::SigningKey, secret: &[u8]) -> hmac::SigningKey { // The spec says that if no salt is provided then a key of // `digest_alg.output_len` bytes of zeros is used. But, HMAC keys are // already zero-padded to the block length, which is larger than the output // length of the extract step (the length of the digest). Consequently, the // `SigningKey` constructor will automatically do the right thing for a // zero-length string. let prk = hmac::sign(salt, secret); hmac::SigningKey::new(salt.digest_algorithm(), prk.as_ref()) } /// Fills `out` with the output of the HKDF-Expand operation for the given /// inputs. /// /// `prk` should be the return value of an earlier call to `extract`. /// /// | Parameter | RFC 5869 Term /// |------------|-------------- /// | prk | PRK /// | info | info /// | out | OKM (Output Keying Material) /// | out.len() | L (Length of output keying material in bytes) /// /// # Panics /// /// `expand` panics if the requested output length is larger than 255 times the /// size of the digest algorithm, i.e. if /// `out.len() > 255 * salt.digest_algorithm().output_len`. This is the limit /// imposed by the HKDF specification, and is necessary to prevent overflow of /// the 8-bit iteration counter in the expansion step. pub fn expand(prk: &hmac::SigningKey, info: &[u8], out: &mut [u8]) { let digest_alg = prk.digest_algorithm(); assert!(out.len() <= 255 * digest_alg.output_len); assert!(digest_alg.block_len >= digest_alg.output_len); let mut ctx = hmac::SigningContext::with_key(prk); let mut n = 1u8; let mut pos = 0; loop { ctx.update(info); ctx.update(&[n]); let t = ctx.sign(); // Append `t` to the output. let to_copy = if out.len() - pos < digest_alg.output_len { out.len() - pos } else { digest_alg.output_len }; let t_bytes = t.as_ref(); for i in 0..to_copy { out[pos + i] = t_bytes[i]; } if to_copy < digest_alg.output_len { break; } pos += digest_alg.output_len; ctx = hmac::SigningContext::with_key(prk); ctx.update(t_bytes); n += 1; } }