1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
// Copyright 2015-2017 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. //! ECDH key agreement using the P-256 and P-384 curves. use {agreement, ec, error}; use super::ops::*; use super::private_key::*; use super::public_key::*; use untrusted; /// A key agreement algorithm. macro_rules! ecdh { ( $NAME:ident, $curve:expr, $name_str:expr, $private_key_ops:expr, $public_key_ops:expr, $ecdh:ident ) => { #[doc="ECDH using the NSA Suite B"] #[doc=$name_str] #[doc="curve."] /// /// Public keys are encoding in uncompressed form using the /// Octet-String-to-Elliptic-Curve-Point algorithm in /// [SEC 1: Elliptic Curve Cryptography, Version 2.0]. Public keys are /// validated during key agreement according to /// [NIST Special Publication 800-56A, revision 2] and Appendix B.3 of /// the NSA's [Suite B Implementer's Guide to NIST SP 800-56A]. /// /// [SEC 1: Elliptic Curve Cryptography, Version 2.0]: /// http://www.secg.org/sec1-v2.pdf /// [NIST Special Publication 800-56A, revision 2]: /// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf /// [Suite B Implementer's Guide to NIST SP 800-56A]: /// https://github.com/briansmith/ring/blob/master/doc/ecdh.pdf pub static $NAME: agreement::Algorithm = agreement::Algorithm { i: ec::AgreementAlgorithmImpl { curve: $curve, ecdh: $ecdh, }, }; fn $ecdh(out: &mut [u8], my_private_key: &ec::PrivateKey, peer_public_key: untrusted::Input) -> Result<(), error::Unspecified> { ecdh($private_key_ops, $public_key_ops, out, my_private_key, peer_public_key) } } } ecdh!(ECDH_P256, &ec::suite_b::curve::P256, "P-256 (secp256r1)", &p256::PRIVATE_KEY_OPS, &p256::PUBLIC_KEY_OPS, p256_ecdh); ecdh!(ECDH_P384, &ec::suite_b::curve::P384, "P-384 (secp384r1)", &p384::PRIVATE_KEY_OPS, &p384::PUBLIC_KEY_OPS, p384_ecdh); fn ecdh(private_key_ops: &PrivateKeyOps, public_key_ops: &PublicKeyOps, out: &mut [u8], my_private_key: &ec::PrivateKey, peer_public_key: untrusted::Input) -> Result<(), error::Unspecified> { // The NIST SP 800-56Ar2 steps are from section 5.7.1.2 Elliptic Curve // Cryptography Cofactor Diffie-Hellman (ECC CDH) Primitive. // // The "NSA Guide" steps are from section 3.1 of the NSA guide, "Ephemeral // Unified Model." // NSA Guide Step 1 is handled separately. // NIST SP 800-56Ar2 5.6.2.2.2. // NSA Guide Step 2. // // `parse_uncompressed_point` verifies that the point is not at infinity // and that it is on the curve, using the Partial Public-Key Validation // Routine. let peer_public_key = parse_uncompressed_point(public_key_ops, peer_public_key)?; // NIST SP 800-56Ar2 Step 1. // NSA Guide Step 3 (except point at infinity check). // // Note that the cofactor (h) is one since we only support prime-order // curves, so we can safely ignore the cofactor. // // It is impossible for the result to be the point at infinity because our // private key is in the range [1, n) and the curve has prime order and // `parse_uncompressed_point` verified that the peer public key is on the // curve and not at infinity. However, since the standards require the // check, we do it using `assert!`. // // NIST SP 800-56Ar2 defines "Destroy" thusly: "In this Recommendation, to // destroy is an action applied to a key or a piece of secret data. After // a key or a piece of secret data is destroyed, no information about its // value can be recovered." We interpret "destroy" somewhat liberally: we // assume that since we throw away the values to be destroyed, no // information about their values can be recovered. This doesn't meet the // NSA guide's explicit requirement to "zeroize" them though. let my_private_key = private_key_as_scalar(private_key_ops, my_private_key); let product = private_key_ops.point_mul(&my_private_key, &peer_public_key); // NIST SP 800-56Ar2 Steps 2, 3, 4, and 5. // NSA Guide Steps 3 (point at infinity check) and 4. // // Again, we have a pretty liberal interpretation of the NIST's spec's // "Destroy" that doesn't meet the NSA requirement to "zeroize." // `big_endian_affine_from_jacobian` verifies that the result is not at // infinity and also does an extra check to verify that the point is on // the curve. big_endian_affine_from_jacobian(private_key_ops, Some(out), None, &product) // NSA Guide Step 5 & 6 are deferred to the caller. Again, we have a // pretty liberal interpretation of the NIST's spec's "Destroy" that // doesn't meet the NSA requirement to "zeroize." } #[cfg(test)] mod tests { use core; use {agreement, ec, limb, test}; use super::super::ops; static SUPPORTED_SUITE_B_ALGS: [(&'static str, &'static agreement::Algorithm, &'static ec::Curve, &'static ops::CommonOps); 2] = [ ("P-256", &agreement::ECDH_P256, &super::super::curve::P256, &super::super::ops::p256::COMMON_OPS), ("P-384", &agreement::ECDH_P384, &super::super::curve::P384, &super::super::ops::p384::COMMON_OPS), ]; #[test] fn test_agreement_suite_b_ecdh_generate() { // Generates a string of bytes 0x00...00, which will always result in // a scalar value of zero. let random_00 = test::rand::FixedByteRandom { byte: 0x00 }; // Generates a string of bytes 0xFF...FF, which will be larger than the // group order of any curve that is supported. let random_ff = test::rand::FixedByteRandom { byte: 0xff }; for &(_, alg, curve, ops) in SUPPORTED_SUITE_B_ALGS.iter() { // Test that the private key value zero is rejected and that // `generate` gives up after a while of only getting zeros. assert!(agreement::EphemeralPrivateKey::generate(alg, &random_00) .is_err()); // Test that the private key value larger than the group order is // rejected and that `generate` gives up after a while of only // getting values larger than the group order. assert!(agreement::EphemeralPrivateKey::generate(alg, &random_ff) .is_err()); // Test that a private key value exactly equal to the group order // is rejected and that `generate` gives up after a while of only // getting that value from the PRNG. let mut n_bytes = [0u8; ec::SCALAR_MAX_BYTES]; let num_bytes = curve.elem_and_scalar_len; limb::big_endian_from_limbs_padded(&ops.n.limbs[..ops.num_limbs], &mut n_bytes[..num_bytes]); { let n_bytes = &mut n_bytes[..num_bytes]; let rng = test::rand::FixedSliceRandom { bytes: n_bytes }; assert!(agreement::EphemeralPrivateKey::generate(alg, &rng) .is_err()); } // Test that a private key value exactly equal to the group order // minus 1 is accepted. let mut n_minus_1_bytes = n_bytes; { let n_minus_1_bytes = &mut n_minus_1_bytes[..num_bytes]; n_minus_1_bytes[num_bytes - 1] -= 1; let rng = test::rand::FixedSliceRandom { bytes: n_minus_1_bytes }; let key = agreement::EphemeralPrivateKey::generate(alg, &rng) .unwrap(); assert_eq!(&n_minus_1_bytes[..], key.bytes(curve)); } // Test that n + 1 also fails. let mut n_plus_1_bytes = n_bytes; { let n_plus_1_bytes = &mut n_plus_1_bytes[..num_bytes]; n_plus_1_bytes[num_bytes - 1] += 1; let rng = test::rand::FixedSliceRandom { bytes: n_plus_1_bytes }; assert!(agreement::EphemeralPrivateKey::generate(alg, &rng) .is_err()); } // Test recovery from initial RNG failure. The first value will be // n, then n + 1, then zero, the next value will be n - 1, which // will be accepted. { let bytes = [ &n_bytes[..num_bytes], &n_plus_1_bytes[..num_bytes], &[0u8; ec::SCALAR_MAX_BYTES][..num_bytes], &n_minus_1_bytes[..num_bytes], ]; let rng = test::rand::FixedSliceSequenceRandom { bytes: &bytes, current: core::cell::UnsafeCell::new(0), }; let key = agreement::EphemeralPrivateKey::generate(alg, &rng) .unwrap(); assert_eq!(&n_minus_1_bytes[..num_bytes], key.bytes(curve)); } } } }