1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// Copyright 2015-2017 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Key Agreement: ECDH, including X25519.
//!
//! # Example
//!
//! Note that this example uses X25519, but ECDH using NIST P-256/P-384 is done
//! exactly the same way, just substituting
//! `agreement::ECDH_P256`/`agreement::ECDH_P384` for `agreement::X25519`.
//!
//! ```
//! # extern crate untrusted;
//! # extern crate ring;
//! #
//! # fn x25519_agreement_example() -> Result<(), ring::error::Unspecified> {
//! use ring::{agreement, rand};
//! use untrusted;
//!
//! let rng = rand::SystemRandom::new();
//!
//! let my_private_key =
//!     agreement::EphemeralPrivateKey::generate(&agreement::X25519, &rng)?;
//!
//! // Make `my_public_key` a byte slice containing my public key. In a real
//! // application, this would be sent to the peer in an encoded protocol
//! // message.
//! let mut my_public_key = [0u8; agreement::PUBLIC_KEY_MAX_LEN];
//! let my_public_key =
//!     &mut my_public_key[..my_private_key.public_key_len()];
//! my_private_key.compute_public_key(my_public_key)?;
//!
//! // In a real application, the peer public key would be parsed out of a
//! // protocol message. Here we just generate one.
//! let mut peer_public_key_buf = [0u8; agreement::PUBLIC_KEY_MAX_LEN];
//! let peer_public_key;
//! {
//!     let peer_private_key =
//!        agreement::EphemeralPrivateKey::generate(&agreement::X25519, &rng)?;
//!     peer_public_key =
//!         &mut peer_public_key_buf[..peer_private_key.public_key_len()];
//!     peer_private_key.compute_public_key(peer_public_key)?;
//! }
//! let peer_public_key = untrusted::Input::from(peer_public_key);
//!
//! // In a real application, the protocol specifies how to determine what
//! // algorithm was used to generate the peer's private key. Here, we know it
//! // is X25519 since we just generated it.
//! let peer_public_key_alg = &agreement::X25519;
//!
//! agreement::agree_ephemeral(my_private_key, peer_public_key_alg,
//!                            peer_public_key, ring::error::Unspecified,
//!                            |_key_material| {
//!     // In a real application, we'd apply a KDF to the key material and the
//!     // public keys (as recommended in RFC 7748) and then derive session
//!     // keys from the result. We omit all that here.
//!     Ok(())
//! })
//! # }
//! # fn main() { x25519_agreement_example().unwrap() }
//! ```

// The "NSA Guide" steps here are from from section 3.1, "Ephemeral Unified
// Model."



use {ec, error, rand};
use untrusted;


pub use ec::PUBLIC_KEY_MAX_LEN;

pub use ec::suite_b::ecdh::{ECDH_P256, ECDH_P384};

pub use ec::curve25519::x25519::X25519;


/// A key agreement algorithm.
#[derive(Eq, PartialEq)]
pub struct Algorithm {
    pub(crate) i: ec::AgreementAlgorithmImpl,
}

/// An ephemeral private key for use (only) with `agree_ephemeral`. The
/// signature of `agree_ephemeral` ensures that an `EphemeralPrivateKey` can be
/// used for at most one key agreement.
pub struct EphemeralPrivateKey {
    private_key: ec::PrivateKey,
    alg: &'static Algorithm,
}

impl<'a> EphemeralPrivateKey {
    /// Generate a new ephemeral private key for the given algorithm.
    ///
    /// C analog: `EC_KEY_new_by_curve_name` + `EC_KEY_generate_key`.
    pub fn generate(alg: &'static Algorithm, rng: &rand::SecureRandom)
                    -> Result<EphemeralPrivateKey, error::Unspecified> {
        // NSA Guide Step 1.
        //
        // This only handles the key generation part of step 1. The rest of
        // step one is done by `compute_public_key()`.
        let private_key = ec::PrivateKey::generate(&alg.i.curve, rng)?;
        Ok(EphemeralPrivateKey { private_key, alg })
    }

    /// The key exchange algorithm.
    #[inline]
    pub fn algorithm(&self) -> &'static Algorithm { self.alg }

    /// The size in bytes of the encoded public key.
    #[inline(always)]
    pub fn public_key_len(&self) -> usize { self.alg.i.curve.public_key_len }

    /// Computes the public key from the private key's value and fills `out`
    /// with the public point encoded in the standard form for the algorithm.
    ///
    /// `out.len()` must be equal to the value returned by `public_key_len`.
    #[inline(always)]
    pub fn compute_public_key(&self, out: &mut [u8])
                              -> Result<(), error::Unspecified> {
        // NSA Guide Step 1.
        //
        // Obviously, this only handles the part of Step 1 between the private
        // key generation and the sending of the public key to the peer. `out`
        // is what should be sent to the peer.
        self.private_key.compute_public_key(&self.alg.i.curve, out)
    }

    #[cfg(test)]
    pub fn bytes(&'a self, curve: &ec::Curve) -> &'a [u8] {
        self.private_key.bytes(curve)
    }
}

/// Performs a key agreement with an ephemeral private key and the given public
/// key.
///
/// `my_private_key` is the ephemeral private key to use. Since it is moved, it
/// will not be usable after calling `agree_ephemeral`, thus guaranteeing that
/// the key is used for only one key agreement.
///
/// `peer_public_key_alg` is the algorithm/curve for the peer's public key
/// point; `agree_ephemeral` will return `Err(error_value)` if it does not
/// match `my_private_key's` algorithm/curve.
///
/// `peer_public_key` is the peer's public key. `agree_ephemeral` verifies that
/// it is encoded in the standard form for the algorithm and that the key is
/// *valid*; see the algorithm's documentation for details on how keys are to
/// be encoded and what constitutes a valid key for that algorithm.
///
/// `error_value` is the value to return if an error occurs before `kdf` is
/// called, e.g. when decoding of the peer's public key fails or when the public
/// key is otherwise invalid.
///
/// After the key agreement is done, `agree_ephemeral` calls `kdf` with the raw
/// key material from the key agreement operation and then returns what `kdf`
/// returns.
///
/// C analogs: `EC_POINT_oct2point` + `ECDH_compute_key`, `X25519`.
pub fn agree_ephemeral<F, R, E>(my_private_key: EphemeralPrivateKey,
                                peer_public_key_alg: &Algorithm,
                                peer_public_key: untrusted::Input,
                                error_value: E, kdf: F) -> Result<R, E>
                                where F: FnOnce(&[u8]) -> Result<R, E> {
    // NSA Guide Prerequisite 1.
    //
    // The domain parameters are hard-coded. This check verifies that the
    // peer's public key's domain parameters match the domain parameters of
    // this private key.
    if peer_public_key_alg.i.curve.id != my_private_key.alg.i.curve.id {
        return Err(error_value);
    }

    let alg = &my_private_key.alg.i;

    // NSA Guide Prerequisite 2, regarding which KDFs are allowed, is delegated
    // to the caller.

    // NSA Guide Prerequisite 3, "Prior to or during the key-agreement process,
    // each party shall obtain the identifier associated with the other party
    // during the key-agreement scheme," is delegated to the caller.

    // NSA Guide Step 1 is handled by `EphemeralPrivateKey::generate()` and
    // `EphemeralPrivateKey::compute_public_key()`.

    let mut shared_key = [0u8; ec::ELEM_MAX_BYTES];
    let shared_key =
        &mut shared_key[..alg.curve.elem_and_scalar_len];

    // NSA Guide Steps 2, 3, and 4.
    //
    // We have a pretty liberal interpretation of the NIST's spec's "Destroy"
    // that doesn't meet the NSA requirement to "zeroize."
    (alg.ecdh)(shared_key, &my_private_key.private_key, peer_public_key)
        .map_err(|_| error_value)?;

    // NSA Guide Steps 5 and 6.
    //
    // Again, we have a pretty liberal interpretation of the NIST's spec's
    // "Destroy" that doesn't meet the NSA requirement to "zeroize."
    kdf(shared_key)
}