1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
// Copyright 2015-2017 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. //! Key Agreement: ECDH, including X25519. //! //! # Example //! //! Note that this example uses X25519, but ECDH using NIST P-256/P-384 is done //! exactly the same way, just substituting //! `agreement::ECDH_P256`/`agreement::ECDH_P384` for `agreement::X25519`. //! //! ``` //! # extern crate untrusted; //! # extern crate ring; //! # //! # fn x25519_agreement_example() -> Result<(), ring::error::Unspecified> { //! use ring::{agreement, rand}; //! use untrusted; //! //! let rng = rand::SystemRandom::new(); //! //! let my_private_key = //! agreement::EphemeralPrivateKey::generate(&agreement::X25519, &rng)?; //! //! // Make `my_public_key` a byte slice containing my public key. In a real //! // application, this would be sent to the peer in an encoded protocol //! // message. //! let mut my_public_key = [0u8; agreement::PUBLIC_KEY_MAX_LEN]; //! let my_public_key = //! &mut my_public_key[..my_private_key.public_key_len()]; //! my_private_key.compute_public_key(my_public_key)?; //! //! // In a real application, the peer public key would be parsed out of a //! // protocol message. Here we just generate one. //! let mut peer_public_key_buf = [0u8; agreement::PUBLIC_KEY_MAX_LEN]; //! let peer_public_key; //! { //! let peer_private_key = //! agreement::EphemeralPrivateKey::generate(&agreement::X25519, &rng)?; //! peer_public_key = //! &mut peer_public_key_buf[..peer_private_key.public_key_len()]; //! peer_private_key.compute_public_key(peer_public_key)?; //! } //! let peer_public_key = untrusted::Input::from(peer_public_key); //! //! // In a real application, the protocol specifies how to determine what //! // algorithm was used to generate the peer's private key. Here, we know it //! // is X25519 since we just generated it. //! let peer_public_key_alg = &agreement::X25519; //! //! agreement::agree_ephemeral(my_private_key, peer_public_key_alg, //! peer_public_key, ring::error::Unspecified, //! |_key_material| { //! // In a real application, we'd apply a KDF to the key material and the //! // public keys (as recommended in RFC 7748) and then derive session //! // keys from the result. We omit all that here. //! Ok(()) //! }) //! # } //! # fn main() { x25519_agreement_example().unwrap() } //! ``` // The "NSA Guide" steps here are from from section 3.1, "Ephemeral Unified // Model." use {ec, error, rand}; use untrusted; pub use ec::PUBLIC_KEY_MAX_LEN; pub use ec::suite_b::ecdh::{ECDH_P256, ECDH_P384}; pub use ec::curve25519::x25519::X25519; /// A key agreement algorithm. #[derive(Eq, PartialEq)] pub struct Algorithm { pub(crate) i: ec::AgreementAlgorithmImpl, } /// An ephemeral private key for use (only) with `agree_ephemeral`. The /// signature of `agree_ephemeral` ensures that an `EphemeralPrivateKey` can be /// used for at most one key agreement. pub struct EphemeralPrivateKey { private_key: ec::PrivateKey, alg: &'static Algorithm, } impl<'a> EphemeralPrivateKey { /// Generate a new ephemeral private key for the given algorithm. /// /// C analog: `EC_KEY_new_by_curve_name` + `EC_KEY_generate_key`. pub fn generate(alg: &'static Algorithm, rng: &rand::SecureRandom) -> Result<EphemeralPrivateKey, error::Unspecified> { // NSA Guide Step 1. // // This only handles the key generation part of step 1. The rest of // step one is done by `compute_public_key()`. let private_key = ec::PrivateKey::generate(&alg.i.curve, rng)?; Ok(EphemeralPrivateKey { private_key, alg }) } /// The key exchange algorithm. #[inline] pub fn algorithm(&self) -> &'static Algorithm { self.alg } /// The size in bytes of the encoded public key. #[inline(always)] pub fn public_key_len(&self) -> usize { self.alg.i.curve.public_key_len } /// Computes the public key from the private key's value and fills `out` /// with the public point encoded in the standard form for the algorithm. /// /// `out.len()` must be equal to the value returned by `public_key_len`. #[inline(always)] pub fn compute_public_key(&self, out: &mut [u8]) -> Result<(), error::Unspecified> { // NSA Guide Step 1. // // Obviously, this only handles the part of Step 1 between the private // key generation and the sending of the public key to the peer. `out` // is what should be sent to the peer. self.private_key.compute_public_key(&self.alg.i.curve, out) } #[cfg(test)] pub fn bytes(&'a self, curve: &ec::Curve) -> &'a [u8] { self.private_key.bytes(curve) } } /// Performs a key agreement with an ephemeral private key and the given public /// key. /// /// `my_private_key` is the ephemeral private key to use. Since it is moved, it /// will not be usable after calling `agree_ephemeral`, thus guaranteeing that /// the key is used for only one key agreement. /// /// `peer_public_key_alg` is the algorithm/curve for the peer's public key /// point; `agree_ephemeral` will return `Err(error_value)` if it does not /// match `my_private_key's` algorithm/curve. /// /// `peer_public_key` is the peer's public key. `agree_ephemeral` verifies that /// it is encoded in the standard form for the algorithm and that the key is /// *valid*; see the algorithm's documentation for details on how keys are to /// be encoded and what constitutes a valid key for that algorithm. /// /// `error_value` is the value to return if an error occurs before `kdf` is /// called, e.g. when decoding of the peer's public key fails or when the public /// key is otherwise invalid. /// /// After the key agreement is done, `agree_ephemeral` calls `kdf` with the raw /// key material from the key agreement operation and then returns what `kdf` /// returns. /// /// C analogs: `EC_POINT_oct2point` + `ECDH_compute_key`, `X25519`. pub fn agree_ephemeral<F, R, E>(my_private_key: EphemeralPrivateKey, peer_public_key_alg: &Algorithm, peer_public_key: untrusted::Input, error_value: E, kdf: F) -> Result<R, E> where F: FnOnce(&[u8]) -> Result<R, E> { // NSA Guide Prerequisite 1. // // The domain parameters are hard-coded. This check verifies that the // peer's public key's domain parameters match the domain parameters of // this private key. if peer_public_key_alg.i.curve.id != my_private_key.alg.i.curve.id { return Err(error_value); } let alg = &my_private_key.alg.i; // NSA Guide Prerequisite 2, regarding which KDFs are allowed, is delegated // to the caller. // NSA Guide Prerequisite 3, "Prior to or during the key-agreement process, // each party shall obtain the identifier associated with the other party // during the key-agreement scheme," is delegated to the caller. // NSA Guide Step 1 is handled by `EphemeralPrivateKey::generate()` and // `EphemeralPrivateKey::compute_public_key()`. let mut shared_key = [0u8; ec::ELEM_MAX_BYTES]; let shared_key = &mut shared_key[..alg.curve.elem_and_scalar_len]; // NSA Guide Steps 2, 3, and 4. // // We have a pretty liberal interpretation of the NIST's spec's "Destroy" // that doesn't meet the NSA requirement to "zeroize." (alg.ecdh)(shared_key, &my_private_key.private_key, peer_public_key) .map_err(|_| error_value)?; // NSA Guide Steps 5 and 6. // // Again, we have a pretty liberal interpretation of the NIST's spec's // "Destroy" that doesn't meet the NSA requirement to "zeroize." kdf(shared_key) }