1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
use secure::ring::hkdf::expand;
use secure::ring::digest::{SHA256, Algorithm};
use secure::ring::hmac::SigningKey;
use secure::ring::rand::{SecureRandom, SystemRandom};

use secure::private::KEY_LEN as PRIVATE_KEY_LEN;
use secure::signed::KEY_LEN as SIGNED_KEY_LEN;

static HKDF_DIGEST: &'static Algorithm = &SHA256;
const KEYS_INFO: &'static str = "COOKIE;SIGNED:HMAC-SHA256;PRIVATE:AEAD-AES-256-GCM";

/// A cryptographic master key for use with `Signed` and/or `Private` jars.
///
/// This structure encapsulates secure, cryptographic keys for use with both
/// [PrivateJar](struct.PrivateJar.html) and [SignedJar](struct.SignedJar.html).
/// It can be derived from a single master key via
/// [from_master](#method.from_master) or generated from a secure random source
/// via [generate](#method.generate). A single instance of `Key` can be used for
/// both a `PrivateJar` and a `SignedJar`.
///
/// This type is only available when the `secure` feature is enabled.
#[derive(Clone)]
pub struct Key {
    signing_key: [u8; SIGNED_KEY_LEN],
    encryption_key: [u8; PRIVATE_KEY_LEN]
}

impl Key {
    /// Derives new signing/encryption keys from a master key.
    ///
    /// The master key must be at least 256-bits (32 bytes). For security, the
    /// master key _must_ be cryptographically random. The keys are derived
    /// deterministically from the master key.
    ///
    /// # Panics
    ///
    /// Panics if `key` is less than 32 bytes in length.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// # /*
    /// let master_key = { /* a cryptographically random key >= 32 bytes */ };
    /// # */
    /// # let master_key: &Vec<u8> = &(0..32).collect();
    ///
    /// let key = Key::from_master(master_key);
    /// ```
    pub fn from_master(key: &[u8]) -> Key {
        if key.len() < 32 {
            panic!("bad master key length: expected at least 32 bytes, found {}", key.len());
        }

        // Expand the user's key into two.
        let prk = SigningKey::new(HKDF_DIGEST, key);
        let mut both_keys = [0; SIGNED_KEY_LEN + PRIVATE_KEY_LEN];
        expand(&prk, KEYS_INFO.as_bytes(), &mut both_keys);

        // Copy the keys into their respective arrays.
        let mut signing_key = [0; SIGNED_KEY_LEN];
        let mut encryption_key = [0; PRIVATE_KEY_LEN];
        signing_key.copy_from_slice(&both_keys[..SIGNED_KEY_LEN]);
        encryption_key.copy_from_slice(&both_keys[SIGNED_KEY_LEN..]);

        Key {
            signing_key: signing_key,
            encryption_key: encryption_key
        }
    }

    /// Generates signing/encryption keys from a secure, random source. Keys are
    /// generated nondeterministically.
    ///
    /// # Panics
    ///
    /// Panics if randomness cannot be retrieved from the operating system. See
    /// [try_generate](#method.try_generate) for a non-panicking version.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// let key = Key::generate();
    /// ```
    pub fn generate() -> Key {
        Self::try_generate().expect("failed to generate `Key` from randomness")
    }

    /// Attempts to generate signing/encryption keys from a secure, random
    /// source. Keys are generated nondeterministically. If randomness cannot be
    /// retrieved from the underlying operating system, returns `None`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// let key = Key::try_generate();
    /// ```
    pub fn try_generate() -> Option<Key> {
        let mut sign_key = [0; SIGNED_KEY_LEN];
        let mut enc_key = [0; PRIVATE_KEY_LEN];

        let rng = SystemRandom::new();
        if rng.fill(&mut sign_key).is_err() || rng.fill(&mut enc_key).is_err() {
            return None
        }

        Some(Key { signing_key: sign_key, encryption_key: enc_key })
    }

    /// Returns the raw bytes of a key suitable for signing cookies.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// let key = Key::generate();
    /// let signing_key = key.signing();
    /// ```
    pub fn signing(&self) -> &[u8] {
        &self.signing_key[..]
    }

    /// Returns the raw bytes of a key suitable for encrypting cookies.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// let key = Key::generate();
    /// let encryption_key = key.encryption();
    /// ```
    pub fn encryption(&self) -> &[u8] {
        &self.encryption_key[..]
    }
}

#[cfg(test)]
mod test {
    use super::Key;

    #[test]
    fn deterministic_from_master() {
        let master_key: Vec<u8> = (0..32).collect();

        let key_a = Key::from_master(&master_key);
        let key_b = Key::from_master(&master_key);

        assert_eq!(key_a.signing(), key_b.signing());
        assert_eq!(key_a.encryption(), key_b.encryption());
        assert_ne!(key_a.encryption(), key_a.signing());

        let master_key_2: Vec<u8> = (32..64).collect();
        let key_2 = Key::from_master(&master_key_2);

        assert_ne!(key_2.signing(), key_a.signing());
        assert_ne!(key_2.encryption(), key_a.encryption());
    }

    #[test]
    fn non_deterministic_generate() {
        let key_a = Key::generate();
        let key_b = Key::generate();

        assert_ne!(key_a.signing(), key_b.signing());
        assert_ne!(key_a.encryption(), key_b.encryption());
    }
}